Compressive Dynamic Scission of Carbon Nanotubes under Sonication: Fracture by Atomic Ejection
슈퍼관리자
2021-05-21
Compressive Dynamic Scission of Carbon Nanotubes under Sonication: Fracture by Atomic Ejection
-
Authors :
H. B. Chew, M.-W. Moon, K.-R. Lee, K.-S. Kim
-
Journal :
Proc. Roy. Soc. Lond. A
-
Vol :
467
-
Page :
1279-1289
-
Year :
2011
Abstract
We report that a graphene sheet has an unusual mode of atomic-scale fracture owing to its structural peculiarity, i.e. single sheet of atoms. Unlike conventional bond-breaking tensile fracture, a graphene sheet can be cut by in-plane compression, which is able to eject a row of atoms out-of-plane. Our scale-bridging molecular dynamics simulations and experiments reveal that this compressive atomic-sheet fracture is the critical precursor mechanism of cutting single-walled carbon nanotubes (SWCNTs) by sonication. The atomic-sheet fracture typically occurs within 200 fs during the dynamic axial buckling of a SWCNT; the nanotube is loaded by local nanoscale flow drag of water molecules caused by the collapse of a microbubble during sonication. This is on the contrary to common speculations that the nanotubes would be cut in tension, or by high-temperature chemical reactions in ultrasonication processes. The compressive fracture mechanism clarifies previously unexplainable diameter-dependent cutting of the SWCNTs under sonication.